Prof. Dr. Peter Sander

Prof. Dr. Peter Sander, Ph.D.

Research Group Leader

Tel.: +41 44 634 26 84


Curriculum vitae

Name Peter Sander
Prof. Dr. rer. nat.
Phone +41 44 634 26 84
University Degree Diploma in biology, University of Munster, Germany PhD, University of Munster Habilitation, Hannover Medical School, Germany and University of Zurich, Switzerland
1983 – 1990 Studies of biology, University of Munster
1993 Dr. rer. nat. (PhD), University of Munster
2001 Habilitation, Hannover Medical School; venia legendi: Microbiology
2004 Habilitation, University of Zurich; venia legendi: Microbiology
2010 Professor, University of Zurich
Professional experience
1990 – 1993 PhD student, Institute for General Zoology and Genetics, University of Munster
1993 – 1998 Postdoc, Department of Medical Microbiology, Hannover Medical School
1998 – 2001 Research Assistant, Department of Medical Microbiology, Hannover Medical School
2001 – today

Principle Investigator and Group leader, Institute of Medical Microbiology, University of Zurich

2018 – today Deputy Head Swiss National Center for Mycobacteria
Research area
  • Mycobacterium tuberculosis: Virulence, host-pathogen interaction, protein secretion, lipoprotein synthesis and transport, genetics
  • Vaccine development
  • Antibiotics: drug development, activity, resistance
Awards/Honours Young investigator award of the German Society for Hygiene and Microbiology (DGHM) 2002

List of publications

Promising agents against tuberculosis
UZH-News Jan 6, 2016

Mit langem Atem gegen die Tuberkulose
UZH-News April 22, 2013

Original articles (peer reviewed)

Molecular mechanisms of intrinsic streptomycin resistance in Mycobacterium abscessus.
Dal Molin M, Gut M, Rominski A, Haldimann K, Becker K, Sander P (2018)
Antimicrob Agents Chemother 62

Lipoprotein glycosylation by protein-O-mannosyltransferase (MAB_1122c) contributes to low cell envelope permeability and antibiotic resistance in Mycobacterium abscessus.
Becker K, Haldimann K, Selchow P, Reinau LM, Dal Molin M, Sander P (2017)
Frontiers Microbiology 8: 2123

Effect of β-lactamase production and β-lactam instability on MIC testing results for Mycobacterium abscessus.
Rominski A, Schultess B, Müller D, Keller P, Sander P (2017)
J Antimicrob Chemother 72: 3070-3078

Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes.
Rominski A, Selchow P, Becker K, Brülle JK, Dal Molin M, Sander P (2017)
J Antimicrob Chemother 72: 2191-2200

Chloroquine enhances the antimycobacterial activity of isoniazid and pyrazinamide by reversing inflammation-induced macrophage efflux.
Matt U, Selchow P, Dal Molin M, Strommer S., Sharif O, Schilcher K, Andreoni F, Stenzinger A, Zinkernagel AS, Zeitlinger M, Sander P, Nemeth J (2017)
Int J Antimicrob Agents 50: 55-62

Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591.
Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P (2017)
J Antimicrob Chemother 72: 376-384

Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages.
Mohanty S, Dal Molin M, Ganguli G, Padhi A, Jena P, Selchow P, Sengupta S, Meuli M, Sander P, Sonawane A (2016)
Tuberculosis 96: 44-57

Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis.
Sander P, Clark S, Petrera A, Vilaplana C, Meuli M, Selchow P, Zelmer A, Mohanan D, Andreu N, Rayner E, Dal Molin M, Bancroft GJ, Johansen P, Cardona PJ, Williams A, Böttger EC (2015)
Vaccine 33: 1353-1359

Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire.
Lepore M, Kalinicenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014)
Nat Commun 5: 3866

Discovery of the first potent and selective Mycobacterium tuberculosis Zmp1 inhibitor.
Mori M, Moraca F, Deodato D, Ferraris DM, Selchow P, Sander P, Rizzi M, Botta M (2014)
Bioorg Med Chem Lett 24: 2508-11

BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle.
Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM (2014)
Vaccine 32: 779-84

Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c.
Brülle JK, Tschumi A, Sander P (2013)
BMC Microbiol 13: 223

Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis.
Waeckerle-Men Y, bruffaerts N, Liang Y, Jurion F, Sander P, Kündig TM, Huygen K, and Johansen P (2013)
Vaccine 31: 1057-1064

Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacteial lgt mutant.
Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H, and Sander P (2012)
J Bacteriol 194: 3938-3949

Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates.
Petrera A, Amstutz B, Gioia M, Hähnlein J, Baici A, Selchow P, Ferraris DM, Rizzi M, Sbardella D, Marini S, Coletta M, and Sander P (2012)
Biol Chem 393: 631-640

Phenylethyl butyrate enhances the potency of second-line drugs against clinical isolates of Mycobacterium tuberculosis.
Grau T, Selchow P, Tigges M, Burri R, Gitzinger M, Böttger EC, Fussenegger M, and Sander P (2012)
Antimicrob Agents Chemother 56: 1142-1145

Crystal structure of Mycobacterium tuberculosis zinc-dependent metallopprotease-1 (Zmp1), a metalloprotease involved in pathogenicity.
Ferraris DM, Sbardella D, Petrera A, Marini S, Amstutz B, Coletta M, Sander P, and Rizzi M (2011)
J Biol Chem 286: 32475-32482

Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies.
Widdick DA, Hicks MG, Thompson BJ, Tschumi A, Chandra G, Sutcliffe IC, Brülle JK, Sander P, Palmer T, and Hutchings MI (2011)
Mol Microbiol 80: 1395-1412

Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens.
Johansen P, Fettelschoss A, Amstutz B, Selchow P, Waeckerle-Men Y, Keller P, Deretic V, Held L, Kündig TM, Böttger EC, and Sander P (2011)
Clin Vaccine Immunol 18: 907-913

Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting.
Joller N, Weber SS, Müller AJ, Spörri R, Selchow P, Sander P, Hilbi H, and Oxenius A (2010)
Proc Natl Acad Sci USA 107: 20441-20446

Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF.
Brülle JK, Grau T, Tschumi A, Auchli Y, Burri R, Polsfuss S, Keller PM, Hunziker P, and Sander P (2010)
Biochem Biophys Res Commun 391: 679-684

Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis.
Shcherbakov D, Akbergenov R, Matt T, Sander P, Andersson DI, and Böttger EC (2010)
Mol Microbiol 77: 830-840

Identification of apolipoprotein N-acyltransferase in mycobacteria.
Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, Keller PM, Grau T, and Sander P (2009)
J Biol Chem 284: 27146-27156

Involvement of CD252 (CD134L) and IL-2 in the expression of cytotoxic proteins in bacterial- and viral-activated human T-cells.
Walch M, Rampini SK, Stoeckli I, Latinovic-Golic S, Dumrese C, Sundstrom H, Vogetseder A, Marino J, Glauser DL, van den Broek M Sander P, Groscurth P, and Ziegler U (2009)
J Immunol 182: 7569-7579

Polyphosphates from Mycobacterium bovis: highly potent inhibitors of class III adenylyl cyclases.
Guo YL, Mayer H, Vollmer W, Dittrich D, Sander P, Schultz A, and Schultz JE (2009)
FEBS J. 276: 1094-1103

LspA-inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest.
Rampini SK, Selchow P, Keller C, Ehlers S, Böttger EC, and Sander P (2008)
Microbiology 154: 2991-3001

Mycobacterium tuberculosis prevents inflammasome activation.
Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P*, and Deretic V* (2008)
Cell Host Microbe 3: 224-232
(*co-corresponding authors)

A mycobacterial smc null mutant is proficient in DNA repair and long-term survival.
Güthlein C, Wanner RM, Sander P, Böttger EC, and Springer B (2008)
J Bacteriol 190: 452-456

Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant.
Keller P, Böttger EC, Sander P (2008)
BMC Microbiology 8: 120

A synthetic mammalian gene circuit reveals anti-tuberculosis compounds.
Weber W, Schoenmakers R, Keller B, Grau T, Gitzinger M, Grau T, Daoud-El Baba M, Sander P, and Fussenegger M (2008)
Proc National Acad Sci USA 105: 9994-9998

Breaking down the wall: fractionation of mycobacteria.
Rezwan M, Laneelle MA, Sander P*, and Daffe M (2007)
J Microbiol Meth 68: 32-39
(* corresponding author)

Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria.
Hobbie SN, Kalapala SK, Subramanian A, Bruell C, Schmidt S, Dabow S, Vasella A, Sander P, and Böttger EC (2007)
Nucl Acids Res 35: 6086-6093

Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264.
Dittrich D, Keller C, Ehlers S, Schultz JE, and Sander P (2006)
Intern J Med Microbiol 296: 563-566

Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA.
Hobbie SN, Pfister P, Bruell C, Sander P, Francois B, Westhof E, and Böttger EC (2006)
Antimicrob Agents Chemother 50: 1489-1496

Interaction of Rv1625c, a mycobacterial class IIIa adenylyl cyclase with a mammalian congener.
Guo YL, Kurz U, Schultz A, Linder JU, Dittrich D, Keller C, Ehlers S, Sander P, and Schultz JE (2005)
Mol Microbiol 57: 667-677

Lack of mismatch correction designs genome evolution in mycobacteria.
Springer B, Sander P, Sedlacek L,Hardt WD, Mizrahi V, Schaer P, and Böttger EC (2004)
Mol Microbiol 53: 1601-1609

Lipoprotein processing is required for virulence of Mycobacterium tuberculosis.
Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt R, Ehlers S, Keller C, Keeble JR, Hagemeier M, Colston MJ, Springer B, and Böttger EC (2004)
Mol Microbiol 52: 1543-1552

The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.
Rand L, Hinds J, Springer B, Sander P, Buxton RS, and Davis EO (2003)
Mol Microbiol 50: 1031-1042

A recA deletion mutant of Mycobacterium bovis BCG confers protection equivalent to that of wild-type BCG but shows increased genetic stability.
Sander P, Böttger EC, Springer B, Steinmann B, Rezwan M, Stavropoulos E, and Colston MJ (2003)
Vaccine 21: 4124-4127

DNA damage induction of recA in Mycobacterium tuberculosis independent of RecA and LexA.
Davis EO, Springer B, Gopaul KK, Papavinasasundaram KG, Sander P, and Böttger EC (2002)
Mol Microbiol 46: 791-800

Oxidative stress response genes in Mycobacterium tuberculosis: Role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages.
Master SS, Springer B, Sander P, Böttger EC, Deretic V, and Timmins GS (2002)
Microbiol 148: 3139-3144

The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis.
Raynaud C, Papavinasasundaram KG, Speight RA, Springer B, Sander P, Böttger EC, Colston MJ, and Draper P (2002)
Mol Microbiol 46: 191-201

Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations.
Sander P, Belova L, Kidan YG, Pfister P, Mankin AS, and Böttger EC (2002)
Mol Microbiol 46: 1295-1304

Fitness cost of chromosomal drug resistance conferring mutations.
Sander P, Springer B, Prammananan T, Sturmfels A, Kappler M, Pletschette M, and Böttger EC (2002)
Antimicrob Agents Chemother 46: 1204-1211

Silencing of oxidative stress response in Mycobacterium tuberculosis: Expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation.
Springer B, Master S, Sander P, Zahrt T, McFalone M, Song J, Papavinasasundaram KG, Colston MJ, Böttger EC, and Deretic V (2001)
Infect Immun 69: 5967-5973

Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance.
Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC and Sander P (2001)
Antimicrob Agents Chemother 45: 2877-2884

pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive.
Xiong L, Polacek N, Sander P, Böttger EC, and Mankin A (2001)
RNA 7: 1365-1369

Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors.
Springer B, Sander P, Sedlacek L, Ellrott K, and Böttger EC (2001)
Int. J Med Microbiol 290: 669-675

Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model.
Sander P, Papavinasasundaram KG, Dick T, Stavropoulos E, Ellrott K, Springer B, Colston MJ, and Böttger EC (2001)
Infect Immun 69: 3562-3568

Structural basis for selectivity and toxicity of ribosomal antibiotics.
Böttger EC, Springer B, Prammananan T, Kidan Y, and Sander P (2001)
EMBO Rep 2: 318-323

In vivo splicing and functional characterization of Mycobacterium leprae RecA.
Frischkorn K, Springer B, Böttger EC, Davis EO, Colston MJ, and Sander P (2000)
J Bacteriol 182: 3590-3592

Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance.
Sander P, De Rossi E, Böddinghaus B, Cantoni R, Branzoni M, Böttger EC, Takiff H, Rodriquez R, Lopez G, and Riccardi G (2000)
FEMS Microbiol Lett 193: 19-23

RecA-mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA.
Prammananan T, Sander P, Springer B, and Böttger EC (1999)
Antimicrob Agents Chemother 43: 447-453

Inteins in mycobacterial GyrA are a taxonomic character.
Sander P, Alcaide F, Richter I, Frischkorn K, Tortoli E, Springer B, Telenti A, and Böttger EC (1998)
Microbiol 144: 589-591

Investigation of mycobacterial recA function: protein introns in the RecA of pathogenic mycobacteria do not affect competency for homologous recombination.
Frischkorn K, Sander P, Scholz M, Teschner K, Prammananan T, and Böttger EC (1998)
Mol Microbiol 29: 1203-1214

Fitness of antibiotic-resistant microorganisms and compensatory mutations.
Böttger EC, Springer B, Pletschette M, and Sander P (1998)
Nature Med 4: 1343-1344

A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae.
Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, Böttger EC, and Wallace RJ Jr (1998)
J Infect Dis 177: 1573-1581

The role of ribosomal RNAs in macrolide resistance.
Sander P, Prammananan T, Meier A, Frischkorn K, and Böttger EC (1997)
Mol Microbiol 26: 469 - 480

Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterialhost with a single rRNA operon.
Sander P, Prammananan T, and Böttger EC (1996)
Mol Microbiol 22: 841-848

Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis.
Meier A, Sander P, Schaper KJ, Scholz M, and Böttger EC (1996)
Antimicrob Agents Chemother 40: 2452-2454

Molecular mechanisms of clarithromycin resistance in Mycobacterium avium: observations of multiple 23S rDNA mutations in a clonal population.
Meier A, Heifets L, Wallace RJ Jr, Zhang Y, Brown BA, Sander P, and Böttger EC (1996)
J Infect. Dis 174: 354-360

Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus.
Wallace RJ Jr, Meier A, Brown BA, Zhang Y, Sander P, Onyi GO, and Böttger EC (1996)
Antimicrob Agents Chemother 40: 1676-1681

rpsL+: a dominant negative selectable marker for gene replacement in mycobacteria.
Sander P, Meier A, and Böttger EC (1995)
Mol Microbiol 16: 991-1000

Review articles

TBVAC2020: Advancing tuberculosis vaccines from discovery to clinical development.
Kaufmann SHE, Dockrell HM, Drager N, Ho MM, McShane H, Neyrolles O, Ottenhoff THM, Patel B, Roordink D, Spertini F, Stenger S, Thole J, Verreck FAW, Williams A; TBVAC2020 Consortium (2017)
Front Immunol 8: 1203

M. tuberculosis lipoproteins in virulence and immunity: fighting with a double-edged sword.
Becker K, Sander P (2016)
FEBS Lett 590: 3800-3819

Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014.
Whole Mycobacteria Cell Vaccines for Tuberculosis Summary Group: Kaufmann S, Bloom B, Brosch R, Cardona P-J, Dockrell H, Fritzell B, Grode L, Hanekom W, Hokey D, Levin M, Martin C, Sander P, Scriba T, Shaligram U, Tameris M, von Reyn F, Walker B, Weiner J, White RG, Schrager L (2015)
Vaccine 33: 3047-55

Lipoprotein synthesis in mycobacteria.
Rezwan M, Grau T, Tschumi A, and Sander P (2007)
Microbiology 153: 652-658.

Mycobacteria: Genetics of resistance and implications for treatment.
Sander P, and Böttger EC (1999)
Chemotherapy 45: 95-108.

Mechanisms of drug resistance in mycobacteria.
Sander P, Meier A, and Böttger EC (1996)
Res Microbiol 147: 59-67.

Book chapters

Bacterial lipoproteins: biogenesis, virulence/pathogenicity and trafficking.
Tokuda H, Sander P, Lee BL, Okuda S, Grau T, Tschumi A, Brülle JK, Kurokawa K, and Nakayama H (2014)
In: Bacterial membranes: Structural and molecular biology. Remaut, H., Fronzes, R. (eds). Caister Academic Press, Norfolk, UK, p. 133 – 177.  

Gene replacement systems in Mycobacterium tuberculosis. In: Tuberculosis and the tubercle bacillus. Eds. Cole, S.T., Eisenach, K.D., McMurray, D.N. and Jacobs, W.R.
Reyrat JM, Sander P, Bardarov S, and Stoker N (2005)
ASM Press, Washington, DC, p. 183-190.

Gene replacement in Mycobacterium tuberculosis and Mycobacterium bovis BCG. In: Methods in Molecular Biology “Mycobacteria Protocols”. Eds. Parish, T., and Stoker, N.G.
Sander P, and Böttger EC (2001)
Humana Press, p. 93-104.

Gene replacement in Mycobacterium smegmatis using a dominant negative selectable marker.
Sander P, and Böttger EC (1998)
Methods Mol Biol 101: 207-216