Selected Literature

BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues.
Arnold IC, Zhang X, Artola-Boran M, Fallegger A, Sander P, Johansen P, Müller A (2019)
PLoS Pathog 15: e1007866

Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG.
Hohl M, Remm S, Eskandarian HA, Dal Molin M, Arnold FM, Hürlimann LM, Krügel A, Fantner GE, Sander P, Seeger MA (2019)
Mol Microbiol 111: 1263-1282

Whole genome sequencing for drug resistance profile prediction in Mycobacterium tuberculosis
Gygli S, Keller P, Ballif M, Blöchliger N, Hömke R, Reinhard M, Loiseau C, Ritter C, Sander P, Borrell S, Collantes J, Avihingsanon A, Gnokoro J, Yotebieng M, Egger M, Gagneux S, Böttger EC (2019)
Antimicrob Agents Chemother 63: e02175-18

The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance.
Luthra S, Rominski A, Sander P (2018)
Front Microbiol 9: 2179

Molecular mechanisms of intrinsic streptomycin resistance in Mycobacterium abscessus.
Dal Molin M, Gut M, Rominski A, Haldimann K, Becker K, Sander P (2018)
Antimicrob Agents Chemother 62

Lipoprotein glycosylation by protein-O-mannosyltransferase (MAB_1122c) contributes to low cell envelope permeability and antibiotic resistance in Mycobacterium abscessus.
Becker K, Haldimann K, Selchow P, Reinau LM, Dal Molin M, Sander P (2017)
Frontiers Microbiology 8: 2123

Effect of β-lactamase production and β-lactam instability on MIC testing results of Mycobacterium abscessus.
Rominski A, Schultess B, Müller D, Keller P, Sander P (2017)
J Antimicrob Chemother 72: 3070-3078

Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes.
Rominski A, Selchow P, Becker K, Brülle JK, Dal Molin M, Sander P (2017)
J Antimicrob Chemother 72: 2191-2200

Chloroquine enhances the antimycobacterial activity of isoniazid and pyrazinamide by reversing inflammation-induced macrophage efflux.
Matt U, Selchow P, Dal Molin M, Strommer S., Sharif O, Schilcher K, Andreoni F, Stenzinger A, Zinkernagel AS, Zeitlinger M, Sander P, Nemeth J (2017)
Int J Antimicrob Agents 50: 55-62

Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591.
Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P (2017)
J Antimicrob Chemother 72: 376-384

TBVAC2020: Advancing tuberculosis vaccines from discovery to clinical development.
Kaufmann SHE, Dockrell HM, Drager N, Ho MM, McShane H, Neyrolles O, Ottenhoff THM, Patel B, Roordink D, Spertini F, Stenger S, Thole J, Verreck FAW, Williams A; TBVAC2020 Consortium (2017)
Front Immunol 8: 1203

Lipase Processing of Complex Lipid Antigens.
Sander P, Becker K, Molin MD (2016)
Cell Chem Biol 23: 1044-1046

M. tuberculosis lipoproteins in virulence and immunity: fighting with a double-edged sword.
Becker K, Sander P (2016)
FEBS Lett: 590: 3800-3819

Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis.
Sander P, Clark S, Petrera A, Vilaplana C, Meuli M, Selchow P, Zelmer A, Mohanan D, Andreu N, Rayner E, Dal Molin M, Bancroft GJ, Johansen P, Cardona PJ, Williams A, Böttger EC (2015)
Vaccine 33: 1353-1359

Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire.
Lepore M, Kalinicenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014)
Nat Commun 5: 3866

Discovery of the first potent and selective Mycobacterium tuberculosis Zmp1 inhibitor.
Mori M, Moraca F, Deodato D, Ferraris DM, Selchow P, Sander P, Rizzi M, Botta M (2014)
Bioorg Med Chem Lett 24: 2508-2511

BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle.
Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM (2014)
Vaccine 32: 779-784

Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c.
Brülle JK, Tschumi A, Sander P (2013)
BMC Microbiol 13: 223

Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis.
Waeckerle-Men Y, Bruffaerts N, Liang Y, Jurion F, Sander P, Kündig TM, Huygen K, Johansen P (2013)
Vaccine 31: 1057-1064

Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant.
Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H, Sander P (2012)
J Bacteriol 194: 3938-3949

Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates.
Petrera A, Amstutz B, Gioia M, Hähnlein J, Baici A, Selchow P, Ferraris DM, Rizzi M, Sbardella D, Marini S, Coletta M, Sander P (2012)
Biol Chem 393: 631-640

Phenylethyl-butyrate enhances the potency of second-line drugs against clinical isolates of M. tuberculosis.
Grau T, Selchow P, Tigges M, Burri R, Gitzinger M, Böttger EC, Fussenegger M, Sander P (2012)
Antimicrob Agents Chemother 56: 1142-1145

Crystal structure of Mycobacterium tuberculosis ZMP1, a metalloprotease involved in pathogenicity.
Ferraris DM, Sbadrdella D, Petrera A, Marini S, Amstutz B, Coletta M, Sander P, Rizzi M (2011)
J Biol Chem 286: 32475-32482

Relief from zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens.
Johansen P, Fettelschoss A, Amstutz B, Selchow P, Wäckerle-Men Y, Keller P, Deretic V, Held L, Kündig TM, Böttger EC, Sander P (2011)
Clin Vaccine Immunol 18: 907-913

Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies.
Widdick DA, Hicks MG, Thompson BJ Tschumi A, Chandra G, Sutcliffe IC, Brülle JK, Sander P, Palmer T, Hutchings MI (2011)
Mol Microbiol 80: 1395-1412

Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo.
Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B, Sander P, Weber-Ban E (2010)
Mol Microbiol 75: 744-754

Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF.
Brülle JK, Grau T, Tschumi A, Auchli Y, Burri R, Polsfuss S, Keller PM, Hunziker P, Sander P (2010)
Biochem Biophys Res Commun 391: 679-684

Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway.
Imkamp F, Striebel F, Sutter M, Özcelik D, Sander P, Weber-Ban E (2010)
EMBO Reports 11: 791-797

Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting.
Joller N, Weber SS, Müller AJ, Spörri R, Selchow P, Sander P, Hilbi H, Oxenius A (2010)
Proc Natl Acad Sci USA 107: 20441-20446

Identification of apolipoprotein n-acyltransferase (LNT) in mycobacteria.
Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, Keller P, Grau T, Sander P (2009)
J Biol Chem 284: 27146-27156

Involvement of CD252 (CD134L) and IL-2 in the expression of cytotoxic proteins in bacterial- or viral-activated human T cells.
Walch M, Rampini SK, Stöckli I, Latinovic-Golic S, Dumrese C, Sundstrom H, Vogetseder A, Marino J, Glauser DL, van den Broek M, Sander P, Groscurth P, Ziegler U (2009)
J Immunol 182: 7569-7579

Polyphosphates from Mycobacterium bovis - potent inhibitors of class III adenylate cyclases.
Guo YL, Mayer H, Vollmer W, Dittrich D, Sander P, Schultz A, Schultz JE (2009)
FEBS J 276: 1094-1103

LspA-inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest.
Rampini SK, Selchow P, Keller C, Ehlers S, Böttger EC, Sander P (2008)
Microbiology 154:  2991-3001

A synthetic mammalian gene circuit reveals anti-tuberculosis compounds.
Weber W, Schoenmakers R, Keller B, Grau T, Gitzinger M, Daoud-El Baba M, Sander P, Fussenegger M (2008)
Proc Natl Acad Sci USA 105: 9994-9998

Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant.
Keller P, Böttger EC, Sander P (2008)
BMC Microbiol 8: 120

Mycobacterium tuberculosis prevents inflammasome activation.
Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V (2008)
Cell Host Microbe 3: 224-232